D2-Like Receptor Expression in the Hippocampus and Amygdala Informs Performance on the Stop-Signal Task in Parkinson's Disease

While Parkinson’s disease (PD) is characteristically recognized for its motor symptoms, some patients develop impulsive and compulsive behaviors (ICBs), manifested as repetitive and excessive participation in reward-driven activities, including sex, gambling, shopping, eating, and hobbyism. Such cognitive alterations compel a consideration of response inhibition in PD. To investigate inhibitory control and assess the brain regions that may participate, we assessed PD patients using a single-blinded d-amphetamine (dAMPH) study, with [18F]fallypride positron emission topography (PET) imaging, and stop-signal task performance. We find a negative relationship between D2-like binding in the mesial temporal region and top-signal reaction time (SSRT), with greater BPND associated with a faster SSRT. These discoveries indicate a novel role for mesolimbic dopamine in response inhibition, and advocate for limbic regulation of action control in this clinical population.

December 2021 · Leah G. Mann, Kaitlyn R. Hay, Alexander K. Song, Steven P. Errington, Paula Trujillo, David H. Zald, Yan Yan, Hakmook Kang, Gordon D. Logan, & Daniel O Claassen